A=\(1+\frac{1}{2}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}+\frac{1}{100}\)
=\(\left(1+\frac{1}{2}+\frac{1}{100}\right)+\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+....+\frac{1}{99\cdot100}\right)\)
=\(\frac{151}{100}+\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{151}{100}+\frac{1}{3}-\frac{1}{100}\)
=\(\frac{11}{6}\)