a) Tập xác định của hàm số là \(\mathbb{R}\).
Ta có: \(y' = 4{x^3} - 6x,y' = 0 \Leftrightarrow 4{x^3} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \frac{{\sqrt 6 }}{2}\end{array} \right.\);
Bảng biến thiên:
Từ bảng biến thiên ta có:
Hàm số đạt cực đại tại \(x = 0\) và .
Hàm số đạt cực tiểu tại \(x = \pm \frac{{\sqrt 6 }}{2}\) và \({y_{CT}} = \frac{{ - 5}}{4}\).
b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 2} \right\}\).
Ta có: \(y' = \frac{{\left( { - 2x + 2} \right)\left( {x + 2} \right) - \left( { - {x^2} + 2x - 1} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - {x^2} - 4x + 5}}{{{{\left( {x + 2} \right)}^2}}}\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 5\\x = 1\end{array} \right.\) (thỏa mãn)
Lập bảng biến thiên của hàm số:
Từ bảng biến thiên ta có:
Hàm số đạt cực đại tại \(x = 1\) và .
Hàm số đạt cực tiểu tại \(x = - 5\) và \({y_{CT}} = 12\).