Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{2x + 1}}{{x - 4}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{2 + \frac{1}{x}}}{{1 - \frac{4}{x}}} = 2\) nên tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) là \(y = 2\).
Lại có: \(\mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} \frac{{2x + 1}}{{x - 4}} = + \infty ;\mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \frac{{2x + 1}}{{x - 4}} = - \infty \) nên tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right) = \frac{{2x + 1}}{{x - 4}}\) đường thẳng \(x = 4\).