\(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=4^x.3^x\)
\(\Rightarrow2^{x+1}.3^y=2^{2x}+3^y\Rightarrow x+1=2x;y=x\)
Vậy : x = 1 và y = 1 (do y = x)
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=4^x.3^y\)
\(\Rightarrow2^{x+1}.3^y=2^{2x}+3^y\)
\(\Rightarrow x+1=2x\) ;y=x
Do y=x \(\Rightarrow x=1;y=1\)