Cho các số x, y, z thỏa mãn điều kiện: xy+yz+zx=1
Tìm GTNN của P=x^4+y^4+z^4
cho 3 số dương x,y,z thỏa mãn : \(x+y+z=xyz\)
CMR : \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
phân tích tành nhân tử
a, x^3 + y^3 +z^3- 3xyz
b, (x-1)(x - 2)(x -3)(x-4) - 3
\(Cho\) \(x;y;z\) \(thỏa\) \(mãn\) \(x+y+z=7\) \(và\) \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=3\)
\(Tính\) \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
tìm giá trị của x,y,z thõa mãn các điều kiện:x+y+z=6 và x^2+y^2+z^2=12
ai giải giúp với
Cho x,y,z là số thực dương thoả mãn \(x+y+z=1\) . Tìm GTNN của biểu thức:
\(P=\frac{x^2}{\left(y+z\right)^2+5yz}+\frac{y^2}{\left(z+x\right)^2+5xz}-\frac{3}{4}\left(x+y\right)^2\)
cho 3 số nguyên dương x,y,z thỏa mãn điều kiện x>0;2x -1=yz.CMR z=1
Phân tích thành nhân tử
a) x3 + y3 + z3 - 3xyz
b) xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
c) x(x + y) - 5x - 5y