\(A=2x^2+3x=x^2+x^2+3x\)
\(=\left(x^2+3x+2\right)+\left(x^2-1\right)-1\)
\(=\left(x+1\right)\left(x+2\right)+\left(x+1\right)\left(x-1\right)-1\)
\(=\left(x+1\right)\left(x+2+x-1\right)-1\)
\(=\left(x+1\right)\left(2x+1\right)-1\)
\(A\) là bội của \(B\) suy ra \(A⋮B\) hay \(\left(x+1\right)\left(2x+1\right)-1⋮x+1\)
\(\Rightarrow1⋮x+1\Leftrightarrow x+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)