Bài 17: Dấu của tam thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Tìm các giá trị của tham số m để tam thức bậc hai sau dương với mọi \(x \in \mathbb{R}\):

\({x^2} + (m + 1)x + 2m + 3\)

Hà Quang Minh
30 tháng 9 2023 lúc 23:33

Để tam thức bậc hai \({x^2} + (m + 1)x + 2m + 3 > 0\)với mọi \(x \in \mathbb{R}\)

Ta có: a = 1 >0 nên \(\Delta  < 0\)

\(\begin{array}{l} \Leftrightarrow {(m + 1)^2} - 4.(2m + 3) < 0\\ \Leftrightarrow {m^2} + 2m + 1 - 8m - 12 < 0\\ \Leftrightarrow {m^2} - 6m - 11 < 0\end{array}\)

Tam thức \(f(m) = {m^2} - 6m - 11\) có \(\Delta ' = 20 > 0\) nên f(x) có 2 nghiệm phân biệt \({m_1} =  3+\sqrt{20}; {m_2} = 3-\sqrt{20}\)

Khi đó 

\(  3+\sqrt{20} < m < 3-\sqrt{20}\)

Vậy \(  3+\sqrt{20} < m < 3-\sqrt{20}\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết