Gọi hai cạnh góc vuông và cạnh huyền của tam giác vuông lần lượt là a(cm), b(cm) và c(cm)(Điều kiện: a>0; b>0; c>0)
Vì các cạnh góc vuông tỉ lệ với 5 và 12 nên a:b=5:12
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{12}\)
Đặt \(\dfrac{a}{5}=\dfrac{b}{12}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=12k\end{matrix}\right.\)
Áp dụng định lí Pytago, ta được:
\(c^2=a^2+b^2\)
\(\Leftrightarrow c^2=\left(5k\right)^2+\left(12k\right)^2=169k^2\)
hay c=13k
Ta có: Chu vi của tam giác bằng 60cm
nên a+b+c=60
\(\Leftrightarrow5k+12k+13k=60\)
\(\Leftrightarrow30k=60\)
hay k=2
Ta có: a=5k(cmt)
nên a=10(cm)
Ta có: b=12k(cmt)
nên b=24(cm)
Ta có: c=13k(cmt)
nên c=26(cm)
Vậy: Độ dài các cạnh của tam giác vuông cần tìm lần lượt là 10cm; 24cm và 26cm