Giải :
Bán kính R của đường tròn tâm C(-2; -2) và tiếp xúc với đường thẳng
∆ : 5x + 12y - 10 = 0 thì bằng khoảng cách từ C đến ∆
R = d(C ;∆) =
=> R = = .
Giải :
Bán kính R của đường tròn tâm C(-2; -2) và tiếp xúc với đường thẳng
∆ : 5x + 12y - 10 = 0 thì bằng khoảng cách từ C đến ∆
R = d(C ;∆) =
=> R = = .
Tìm bán kính của đường tròn tâm C(-2; -2) và tiếp xúc với đường thẳng ∆ : 5x + 12y – 10 = 0 .
Tính bán kính của đường tròn có tâm là điểm \(I\left(1;5\right)\) và tiếp xúc với đường thẳng \(\Delta:4x-3y+1=0\) ?
Cho hai đường thẳng: \(\Delta:\left(m+3\right)x+3y-2m+3=0,\Delta':2x+2y+2-3m=0\). Tìm giá trị của tham số m để:
a, Đường thẳng △ song song với △'
b, Đường thẳng △ cắt đường thẳng △'
viết phương trình đường tròn biết nó tiếp xúc với đen ta 1 :x-2y+3=0 tại M(1;2) và có tâm i thuộc đen ta 2: x-5y-5=0
viết phương trình đường tròn biết nó tiếp xúc với đen ta 1 :x-2y+3=0 tại M(1;2) và có tâm i thuộc đen ta 2: x-5y-5=0
Trên mặt phẳng Oxy, cho đường thẳng \(\Delta:x-y+2=0,\Delta':ax+by-2=0\left(-2\le b\le2\right)\) và điểm A (1;1). Tính giá trị của \(T=a^2+b^2\) biết \(\Delta'\) đi qua A và \(\cos\left(\Delta;\Delta'\right)\) đạt giá trị lớn nhất
Cho đường thẳng \(\Delta\) có phương trình tham số : \(\left\{{}\begin{matrix}x=2+2t\\y=3+t\end{matrix}\right.\)
a) Tìm điểm M nằm trên \(\Delta\)và cách điểm \(A\left(0;1\right)\) một khoảng bằng 5
b) Tìm tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng \(x+y+1=0\)
c) Tìm điểm M trên \(\Delta\) sao cho AM ngắn nhất
Cho trước 2 điểm \(A\left(-2;-3\right);B\left(1;-2\right)\)
Đường thẳng \(\Delta:2x-3y+6=0\)
Tìm C trên \(\Delta\) sao cho \(\left|CA-CB\right|\) lớn nhất
Lập phương trình đường thẳng (d) đối xứng với đường thẳng (d) quan đường thẳng (\(\Delta\)) biết:
a, (d): x + 2y -1 = 0; (\(\Delta\)): 2x - y + 3=0
b, (d): 2x + 3y + 5 = 0; (\(\Delta\)) 5x - y + 4 = 0