\(\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\)
\(\dfrac{x}{z}=\dfrac{4}{3}\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)
\(\Rightarrow\left\{{}\begin{matrix}x=50.4\\y=50.6\\z=50.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=200\\y=300\\z=150\end{matrix}\right.\)
a) Theo đề bài ta có:
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\) và \(x-y+z=50\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)
\(\dfrac{x}{4}=50\Rightarrow x=50.4=200\)
\(\dfrac{y}{6}=50\Rightarrow y=50.6=300\)
\(\dfrac{z}{3}=50\Rightarrow z=50.3=150\)
Vậy \(x=200,y=300,z=150\)