Bài tập cuối chương 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tiệm cận xiên của đồ thị hàm số \(y=\dfrac{2x^3+3x^2-3}{x^2-1}\) là đường thẳng có phương trình.

A. y = 2x + 3.                      B. y = 2x + 1.

C. y = x + 3.                       D. y = x + 1.

datcoder
28 tháng 10 lúc 23:16

Chọn A

Tập xác định: \(D = \mathbb{R}\backslash \{  - 1;1\} \)

Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to  + \infty }  = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = 2\)

\(b = \mathop {\lim }\limits_{x \to  + \infty } (y - ax) = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - 2x) = 3\)

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to  + \infty } [\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - (2x + 3)] = 0\)

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x + 3