\(\left(\dfrac{\sqrt{3}.\left(\sqrt{3}+2\right)}{\sqrt{3}+2}+\dfrac{\sqrt{2}.\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right).\dfrac{1}{\sqrt{2}+\sqrt{3}}\)
\(=\left(\sqrt{3}+\sqrt{2}\right).\dfrac{1}{\sqrt{2}+\sqrt{3}}=1\)
\(\left(\dfrac{\sqrt{3}.\left(\sqrt{3}+2\right)}{\sqrt{3}+2}+\dfrac{\sqrt{2}.\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\right).\dfrac{1}{\sqrt{2}+\sqrt{3}}\)
\(=\left(\sqrt{3}+\sqrt{2}\right).\dfrac{1}{\sqrt{2}+\sqrt{3}}=1\)
thực hiện phép tính
A=\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
B=\(\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{2}}}\cdot\left(3+\sqrt{5}\right)\)
Thực hiện các phép tính sau:
a. \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{15}+3}\)
b. \(\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)-\dfrac{4}{\sqrt{3}+1}\)
c. \(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{18}+\sqrt{27}\right)\)
Thực hiện các phép tính:
a. \(\left(\sqrt{80}+\sqrt{20}\right):\sqrt{45}\)
b. \(\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{18}+\sqrt{27}\right)\)
c. \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}-\dfrac{6}{\sqrt{15+3}}\)
d. \(\left(\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\right)-\dfrac{4}{\sqrt{3}+1}\)
a) \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
b) \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
Tính:
E=(\(\sqrt{18}-3\sqrt{6}+\sqrt{2}\)) \(\sqrt{2}+6\sqrt{3}\)
G=\(\left(2\sqrt{2}-\sqrt{5}+\sqrt{18}\right)\).\(\left(\sqrt{50}+\sqrt{5}\right)\)
H=\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\).\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)
a, \(A=\left(\sqrt{2}+1\right)[\left(\sqrt{2}\right)^2+1][(\sqrt{2})^4+1][\left(\sqrt{2}\right)^8+1][1\left(\sqrt{2}\right)^{16}+1]\)
b, \(B=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+1\sqrt{2020}}\)
c,\(C=^3\sqrt[]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\)
Rút gọn:
1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}\)
\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right).\dfrac{a-4}{\sqrt{4a}}\)
\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)
\(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)
Làm chi tiết giúp mình với vì mình yếu phần này lắm
\(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\times\left(3\sqrt{\dfrac{2}{3}}-\sqrt{2}-\sqrt{6}\right)\times\left(-\sqrt{6}\right)\)
Rút gọn:
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}\)
b)\(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}\)
c)\(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}\)
d)\(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)
f)\(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}\dfrac{2}{\sqrt{2}+1}\)