\(\frac{{9{x^2} + 5x + x}}{{3x}} = \frac{{9{x^2} + 6x}}{{3x}} = \frac{{9{x^2}}}{{3x}} + \frac{{6x}}{{3x}} = 3x + 2\)
\(\frac{{2{x^2} - 3x - 2}}{{2 - x}} = \frac{{2{x^2} - 3x - 2}}{{ - x + 2}} = - 2x - 1\)
\(\frac{{9{x^2} + 5x + x}}{{3x}} = \frac{{9{x^2} + 6x}}{{3x}} = \frac{{9{x^2}}}{{3x}} + \frac{{6x}}{{3x}} = 3x + 2\)
\(\frac{{2{x^2} - 3x - 2}}{{2 - x}} = \frac{{2{x^2} - 3x - 2}}{{ - x + 2}} = - 2x - 1\)
Thực hiện phép nhân.
a) \((4x - 3)(x + 2)\)
b) \((5x + 2)( - {x^2} + 3x + 1)\)
c) \((2{x^2} - 7x + 4)( - 3{x^2} + 6x + 5)\)
Thực hiện phép chia \(({x^2} + 5x + 9):(x + 2)\)
Thực hiện phép nhân \((4x - 3)(2{x^2} + 5x - 6)\)
Thực hiện phép chia P(x) = \((6{x^2} + 4x)\) cho Q(x) = 2x.
Thực hiện phép chia.
a) \((8{x^6} - 4{x^5} + 12{x^4} - 20{x^3}):4{x^3}\)
b) \((2{x^2} - 5x + 3):(2x - 3)\)
Thực hiện phép nhân \((3x + 1)({x^2} - 2x + 1)\), rồi đoán xem \((3{x^3} - 5{x^2} + x + 1):(3x + 1)\) bằng đa thức nào.
Thực hiện phép chia.
a) \((4{x^2} - 5):(x - 2)\)
b) \((3{x^3} - 7x + 2):(2{x^2} - 3)\)
Thực hiện phép tính \(\dfrac{1}{5}.({x^2} + 1).5\)
Hãy dùng tính chất phân phối để thực hiện phép nhân x.(2x+3)