\(M=2^{100}-2^{99}+2^{98}-2^{97}+...+2-1\)
\(\Rightarrow2M=2\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2-1\right)\)
\(2M=2^{101}-2^{100}+2^{99}-2^{98}+...+2^2-2\)
\(2M+M=3M=2^{101}-2^{100}+2^{99}-2^{98}+...+2^2-2+2^{100}-2^{99}+2^{98}-2^{97}+...+2-1\)
\(3M=2^{101}-1\Leftrightarrow M=\dfrac{2^{101}-1}{3}\) vậy \(M=\dfrac{2^{101}-1}{3}\)
\(M=2^{100}-2^{99}+2^{98}-2^{97}+...+2-1\)
\(2M=2\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2-1\right)\)
\(2M=2^{101}-2^{100}+2^{99}-2^{98}+...+2^2-2\)
\(2M+M=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^2-2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2-1\right)\)
\(3M=2^{101}-1\)
\(M=\dfrac{2^{101}-1}{3}\)