Ôn tập cuối chương 3

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Thành tích môn nhảy cao của các vận động viên tại một giải điền kinh dành cho học sinh trung học phổ thông như sau:

a) Tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên.

b) Độ phân tán của mẫu số liệu cho biết điều gì?

datcoder
27 tháng 10 lúc 17:14

a) Khoảng biến thiên của mẫu số liệu: \(R = 178 - 170 = 8\)

Cỡ mẫu: \(n = 3 + 10 + 6 + 1 = 20\)

Vì \(3 < \frac{n}{4} = 20 < 13\) nên nhóm \(\left[ {172;174} \right)\) chứa tứ phân vị thứ nhất.

Do đó, tứ phân vị thứ nhất là: \({Q_1} = 172 + \frac{{\frac{{20}}{4} - 3}}{{10}}.2 = 172,4\)

Vì \(13 < \frac{{3n}}{4} = 15 < 19\) nên nhóm \(\left[ {174;176} \right)\) chứa tứ phân vị thứ ba. 

Do đó, tứ phân vị thứ ba là: \({Q_3} = 174 + \frac{{\frac{{3.20}}{4} - \left( {3 + 10} \right)}}{6}.2 = \frac{{524}}{3}\)

Khoảng tứ phân vị là: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{524}}{3} - 172,4 = \frac{{34}}{{15}}\)

Mẫu số liệu với giá trị đại diện

Mức xà (cm)

[170; 172)

[172; 174)

[174; 176)

[176; 180)

Giá trị đại diện

171

173

175

178

Số vận động viên

3

10

6

1

Giá trị trung bình: \(\overline x  = \frac{1}{{20}}\left( {171.3 + 173.10 + 175.6 + 177.1} \right) = 173,5\) (cm)

Phương sai của mẫu số liệu:

\({s^2} = \frac{1}{{20}}\left( {{{171}^2}.3 + {{173}^2}.10 + {{175}^2}.6 + {{177}^2}.1} \right) - 173,{5^2} = 2,35\)

Độ lệch chuẩn của mẫu số liệu: \(s = \sqrt {2,35}  = \frac{{\sqrt {235} }}{{10}} \approx 1,53\) (cm)

b) Độ phân tán của mẫu số liệu cho biết:

Độ biến thiên của mẫu số liệu gốc xấp xỉ 8cm.

Khoảng tứ phân vị của mẫu số liệu gốc xấp xỉ \(\frac{{34}}{{15}}cm\).

Phương sai của mẫu số liệu gốc xấp xỉ 2,35.

Độ lệch chuẩn của mẫu số liệu gốc xấp xỉ 1,53cm.