Tìm tất cả các giá trị của tham số m để phương trình \(x^2+\sqrt{1-x^2}=m\) có nghiệm là [a; b]
Tính S = a + b
Tìm tất cả các giá trị của tham số m để bất phương trình : -x2+x-m>0 vô nghiệm
Cho phương trình \(\sqrt{x-1}+\sqrt{5-x}+3\sqrt{\left(x-1\right)\left(5-x\right)=m}\) Có tất cả bao nhiêu giá trị nguyên của m để phương trình trên có nghiệm
Cho phương trình \(\sqrt{2x+m}=x-1\). Tất cả các giá trị của m để phương trình có hai nghiệm phân biệt lớn hơn 1
Gọi là tập hợp gồm các giá trị thực của tham số m để phương trình \(x-2\sqrt{x+2}-m-3=0\) có 2 nghiệm phân biệt . Mệnh đề đúng là :
\(A,S=\left(-6;-5\right)\)
\(B,S=(-6;-5]\)
\(C,S=[-6;-5)\)
\(D,S=\left(-6;+\infty\right)\)
Cho phương trình \(m^2+m\left(x^2-3x-4-\sqrt{x+7}\right)-\left(x^2-3x-4\right)\sqrt{x+7}=0\) ,với m là tham số.
Có tất cả bao nhiêu số nguyên tố m để phương trình có số nghiệm thực nhiều nhất ?
1/ Điều kiện của tham số m để bpt 2x2 + (m-1)x + 1 - m < 0 vô nghiệm
2/ Tìm tất cả các giá trị của m để bpt x2 - (2m-1)x + 2m-2 ≤ 0 có tập nghiệm là 1 đoạn có độ dài = 5.
tìm tất cả giá trị của tham số m sao cho bất phương trình sau có nghiệm đúng với mọi x
(x2-1)(x-1)x3+(x2-x)2(2-m)+(x2-1)(x-1)>0