a) BD.\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BD\sqrt{CH.BC}+CE\sqrt{BH.BC}=AH.BC=AB.AC\)
\(\Leftrightarrow BD\sqrt{AC^2}+CE\sqrt{AB^2}=AB.AC\Leftrightarrow\dfrac{BD}{AB}+\dfrac{CE}{AC}=1\) (đẳng thức đúng)
Áp dụng định lí Ta- lét ta có:
\(\dfrac{BD}{AB}=\dfrac{BH}{BC};\dfrac{CE}{AC}=\dfrac{CH}{BC}\)
\(\dfrac{BD}{AB}+\dfrac{CE}{AC}=\dfrac{BH+CH}{BC}=\dfrac{BC}{BC}=1\)