Từ một điểm A bên ngoài (O), vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc B A C ^ cắt BC và BD lần lượt tại M và N. Vẽ dây BF vuông góc với MN, cắt MN tại H, cắt CD tại E. Chứng minh:
a, Tam giác BMN cân
b, F D 2 = F E . F B
Cho tam giác ABC nội tiếp đường tròn (O). Gọi E, M, F lần lượt là điểm chính giữa của các cung BC, CA, AB.
a) Chứng minh AE ⊥ MF
b) AE cắt CF tại I. Chứng minh rằng ΔCEI là tam giác cân.
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Cho tam giác ABC đều nội tiếp(O), D thuộc cung BC ko chứa A. AB cắt CD tại E, AC cắt BD tại F. CM: AB²=BE.CF
Cho đường tròn (O;AB). Lấy điểm C sao cho số đo cung AC=111 độ. Từ một điểm D trên OA kẻ đường thẳng vuông góc với AB cắt tiếp tuyến tại C ở điểm E, cắt AC tại I và cắt đường tròn (O) tại M và N.
a) Tính số đo góc ABC
b) Chứng minh tam giác IEC cân.
Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại m, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AH ⊥ BE
b) MD2=MB.ME
Các bạn giúp mik vs ạ
ho điểm A thuộc đường tròn tâm O.trên tiếp tuyến của (O) tại A,lấy điểm B khác A.đoạn thẳng OB cắt (O) tại M.vẽ AC vuông góc với OB tại C.chứng minh AM là tia phân giác của tam giác ABC
Cho tam giác ABC đều nội tiếp(O), D thuộc cubg BC ko chứa A. AB cắt CD tại F. CM: AB²=BE.CF
cho o r từ s nằm ngoài đường tròn tâm o kẻ các tiếp tuyến sa và sa' cát tuyến sbc với (o) phân giác góc bac cắt bc tại d cắt (o) tại e gọi h là giao điểm của os và aa' g,f là giao điểm oe và aa' với bc chứng minh sa=sd,sa2=sf.sg