Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.
Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.
(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:
Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.
Gọi điểm M là giao điểm của hàm cầu \(p = - 0,36x + 9\) và hàm cung \(p = 0,14x + 2\)
Khi đó, phương trình hoành độ giao điểm của hàm cầu và hàm cung là:
\( - 0,36x + 9 = 0,14x + 2\), suy ra \(x = 14\) nên \(p = - 0,36.14 + 9 = \frac{{99}}{{25}}\). Do đó, \(M\left( {14;\frac{{99}}{{25}}} \right)\)
Đồ thị hàm số \(p = - 0,36x + 9\) đi qua điểm \(M\left( {14;\frac{{99}}{{25}}} \right)\) và điểm N(0 ;9)
Đồ thị hàm số \(p = 0,14x + 2\) đi qua điểm \(M\left( {14;\frac{{99}}{{25}}} \right)\) và điểm P(0; 2)
Diện tích hình giới hạn bởi đồ thị hàm số \(p = - 0,36x + 9\), trục hoành và hai đường thẳng \(x = 0,x = 14\) là: \({S_1} = \int\limits_0^{14} {\left| { - 0,36x + 9} \right|dx} = \int\limits_0^{14} {\left( { - 0,36x + 9} \right)dx} = \left( { - 0,18{x^2} + 9x} \right)\left| \begin{array}{l}14\\0\end{array} \right.\)
\( = - 0,{18.14^2} + 9.14 = 90,72\)
Diện tích hình giới hạn bởi đồ thị hàm số \(p = 0,14x + 2\), trục hoành và hai đường thẳng \(x = 0,x = 14\) là:
\({S_2} = \int\limits_0^{14} {\left| {0,14x + 2} \right|dx} = \int\limits_0^{14} {\left( {0,14x + 2} \right)dx} = \left( {0,07{x^2} + 2x} \right)\left| \begin{array}{l}14\\0\end{array} \right.\)\( = 0,{07.14^2} + 2.14 = 41,72\)
Thặng dư tiêu dùng cho sản phẩm này là: \({S_1} - OQ.QM = 90,72 - 14.\frac{{99}}{{25}} = 35,28\)
Thặng dư sản xuất cho sản phẩm này là: \(OQ.OM - {S_2} = 14.\frac{{99}}{{25}} - 41,72 = 13,72\)