\(1.\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=|\sqrt{x-1}-1|=\sqrt{x-1}-1\)
\(2.\dfrac{1}{\sqrt{9-12x+4x^2}}=\dfrac{1}{\sqrt{\left(2x-3\right)^2}}=\dfrac{1}{|2x-3|}\)
\(3.\dfrac{1}{\sqrt{x+2\sqrt{x-1}}}=\dfrac{1}{\sqrt{x-1+2\sqrt{x-1}+1}}=\dfrac{1}{\sqrt{\left(\sqrt{x-1}+1\right)^2}}=\dfrac{1}{|\sqrt{x-1}+1|}\)