\(\left\{{}\begin{matrix}x\ge-\dfrac{3}{5}\\5x+3=3-\sqrt{2}\Rightarrow x=\dfrac{-\sqrt{2}}{5}>\dfrac{-3}{5}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\sqrt{2}}{-5}\)
\(\left\{{}\begin{matrix}x\ge-\dfrac{3}{5}\\5x+3=3-\sqrt{2}\Rightarrow x=\dfrac{-\sqrt{2}}{5}>\dfrac{-3}{5}\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{\sqrt{2}}{-5}\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Giải phương trình:
1, \(x^2\sqrt{x}+\left(x-5\right)^2\sqrt{5-x}=11\left(\sqrt{x}+\sqrt{5-x}\right)\)
2, \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+3}=0\)
3, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
4, \(\sqrt{x^2-\dfrac{1}{4x}}+\sqrt{x-\dfrac{1}{4x}}=x\)
5, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-1-20}=5\sqrt{x+1}\)
Tìm x biết
a) \(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c ) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x+1}\)
e ) \(\sqrt{4x^2+4x+1}=1\)
giải các phương trình
1) \(\sqrt{4x-20}\) +3\(\sqrt{\dfrac{x-5}{9}}\) \(-\dfrac{1}{3}\sqrt{9x-45}=6\)
2)\(\sqrt{x+1}+\sqrt{x+6}=5\)
3) \(x^2-6x+\sqrt{x^2-6x+7}=5\)
4)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
5)\(\sqrt{x^2-\dfrac{1}{4}+\sqrt{x^2+x+\dfrac{1}{4}}}=\dfrac{1}{2}\left(2x^3+x^2+2x+1\right)\)
6)\(\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
7)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
Giải các phương trình sau:
a) \(\sqrt{25x^2-9}-2\sqrt{5x+3}=0\)
b) \(\dfrac{\sqrt{x-3}}{\sqrt{2x+1}}=2\)
c) \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
* Giải phương trình:
a. \(\sqrt{x^2-6x+9}=2\)
b. \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
\(\dfrac{2\sqrt{3}-3\sqrt{2}}{\sqrt{6}}-\dfrac{2}{1-\sqrt{3}}\)
\(\dfrac{4}{\sqrt{6}+\sqrt{2}}-\dfrac{\sqrt{54}+\sqrt{2}}{\sqrt{3}+1}\)
\(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{20}{5+\sqrt{5}}-\sqrt{20}\)
Bài 2
\(\sqrt{25x^2-10x+1}=\sqrt{4x^2+8x+4}\)
\(\sqrt{x^2-3}+1=x\)
\(\sqrt{7-2x}=\sqrt{x^2+7}\)
\(\sqrt{9x-27}+\dfrac{1}{2}\sqrt{4x-12}-9\sqrt{\dfrac{x-3}{9}}=2\)
a)\(\sqrt{4\left(x+5\right)}-3\sqrt{x+5}+\dfrac{4}{3}\left(9x+5\right)\)
b)\(\sqrt{9-4\sqrt{5}}\)
c)\(\sqrt{9-6x+4x^2}\)=4
d)\(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\)