Đặt \(A=\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
\(\Rightarrow A^3=1+\dfrac{\sqrt{84}}{9}+1-\dfrac{\sqrt{84}}{9}+3A.\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}.\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
\(\Leftrightarrow A^3=2+3A.\sqrt[3]{1-\dfrac{84}{81}}\)
\(\Leftrightarrow A^3=2+3A.\sqrt[3]{-\dfrac{3}{81}}=2+3A.\sqrt[3]{-\dfrac{1}{27}}\)
\(\Leftrightarrow A^3=2-A\)
\(\Leftrightarrow A^3+A-2=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\)
Dể thấy \(A^2+A+2=\left(A+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Rightarrow A-1=0\Leftrightarrow A=1\)
Vậy \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là số nguyên (đpcm)