Gọi số có 6 chữ số phân biệt là \(\overline {abcdef} \).
Chữ số 4 có giá trị bằng 4 000 nên số 4 ở vị trí c. Số cần tìm là \(\overline {ab4def} \)
Vì hai chữ số cạnh nhau luôn là hai số tự nhiên liên tiếp nên số b, 4 và d là 3 số tự nhiên liên tiếp. Do đó, \(\overline {b4d} \) có thể là 345 hoặc 543.
+ Nếu \(\overline {b4d} \) là 345 thì a=2, e=6, f=7. Ta được n = 234 567.
+ Nếu \(\overline {b4d} \) là 543 thì a=6, e=2, f=1. Ta được n = 654 321.
Vậy tìm được 2 số là 234 567 và 654 321.