\(\sqrt{37}-\sqrt{15};2\)
có \(\left(\sqrt{37}-\sqrt{15}\right)^2=37-2\sqrt{555}+15=52-2\sqrt{555}\)
\(2^2=4\)
xét \(52-2\sqrt{555}-4=48-2\sqrt{555}\)
SS:\(48;2\sqrt{555}\)
\(48^2=2304\)
\(\left(2\sqrt{555}\right)^2=2220\)
2304>2220=>\(\sqrt{37}-\sqrt{15}>2\)
√24+√49 và 12
\(\left(\text{√ 24 + √ 49 }\right)^2=24+28\sqrt{6}+49=73+28\sqrt{6}\)
\(12^2=144\)
xét \(144-73-28\sqrt{6}=71-28\sqrt{6}\)
SS:\(71;28\sqrt{6}\)
\(71^2=5041\)
\(\left(28\sqrt{6}\right)^2=4704\)
5041>4704=>\(12>\sqrt{24}+\sqrt{49}\)