\(A=\dfrac{2^{10}+1}{2^{10}-1},B=\dfrac{2^{10}-1}{2^{10}-3}\)
Dễ thui
\(A=\dfrac{2^{10}-1+2}{2^{10}-1}=1+\dfrac{2}{2^{10}-1}\)
\(B=\dfrac{2^{10}-1}{2^{10}-3}=\dfrac{2^{10}-3+2}{2^{10}-3}=1+\dfrac{2}{2^{10}-3}\)
Vì \(2^{10}-1>2^{10}-3\) nên \(\dfrac{2}{2^{10}-1}< \dfrac{2}{2^{10}-3}\)
Suy ra A<B