Ta có: \(5^{143}\)=(\(5^{11}\))\(^{13}\)= \(48828125^{13}\)
\(7^{119}\)=(\(7^7\))\(^{17}\)=\(823543^{17}\)
Vì \(48828125^{13}\) < \(823543^{17}\) nên \(5^{143}\) < \(7^{119}\)
Vậy \(5^{143}\) < \(7^{119}\)
Học tốt
Ta có: \(5^{143}\) = \((\)\(5^{11}\)\() \) \(^{13}\) = 48828125\(^{13}\)
7\(^{119}\) = \((\)7\(^7\)\()\)\(^{17}\) = 823543\(^{17}\)
Vì 48828125\(^{13}\) < 823543\(^{17}\)
Nên 5\(^{143}\) < 7\(^{119}\)
⇔ 5\(^{143}\) < 7\(^{119}\)
Học tốt