a, \(2\sqrt{5}và3\sqrt{2}\)
giả sử : \(2\sqrt{5}< 3\sqrt{2}\)
\(\Leftrightarrow\sqrt{4.5}< \sqrt{9.2}\)
\(\Leftrightarrow\sqrt{20}< \sqrt{18}\left(luônsai\right)\)( vì 20>18)
=> điều giả sử sai,từ đó suy ra : \(\sqrt{20}>\sqrt{18}hay2\sqrt{5}>3\sqrt{2}\)
b,\(-3\sqrt{6}và-4\sqrt{5}\)
Giả sử : \(-3\sqrt{6}>-4\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(-3\right)^2.6}>\sqrt{\left(-4\right)^2.5}\)
\(\Leftrightarrow\sqrt{54}>\sqrt{80}\left(luônsai\right)\) ( vì 54<80)
=> điều giả sử sai .Từ đó suy ra : \(\sqrt{54}< \sqrt{80}hay-3\sqrt{6}< -4\sqrt{5}\)
c,\(\sqrt{2}+\sqrt{3}và\sqrt{10}\)
Giả sử : \(\sqrt{2}+\sqrt{3}=\sqrt{10}\)
\(\Leftrightarrow\left(\sqrt{2}+\sqrt{3}\right)^2=\left(\sqrt{10}\right)^2\) ( bình phương hai vế )
\(\Leftrightarrow2+2\sqrt{6}+3=100\)
\(\Leftrightarrow5+2\sqrt{6}=100\)
\(\Leftrightarrow\sqrt{4.6}=100-5\)
\(\Leftrightarrow\sqrt{24}=95\Leftrightarrow\sqrt{24}=\sqrt{95}\) ( luôn sai ) ( vì 24 < 95)
=> điều giả sử sai .Từ đó suy ra : \(\sqrt{24}< \sqrt{95}hay\sqrt{2}+\sqrt{3}< \sqrt{10}\)
**so sánh 2 căn 5 và 3 căn 2
ta có
\(2\sqrt{5}=\sqrt{2^2\cdot5}=\sqrt{20}\) ; (1)
\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\) (2)
từ (1) và(2) ta có \(\sqrt{20}>\sqrt{18}\Leftrightarrow2\sqrt{5}>3\sqrt{2}\)
**so sánh -3 căn 6 và -4 căn 5
ta có
\(-3\sqrt{6}=-\sqrt{3^2.6}=-\sqrt{54}\) ; (3)
\(-4\sqrt{5}=-\sqrt{4^2.5}=-\sqrt{80}\) (4)
từ (3) và(4) ta có
\(-\sqrt{54}>-\sqrt{80}\Leftrightarrow-3\sqrt{6}>-4\sqrt{5}\)