Lời giải:
Xét số hạng cuối cùng của các tập hợp ta có:
S1 :2=0+2=1+2-1
S2:5=0+2+3=1+2+3-1
S3:9=0+2+3+4=1+2+3+4-1
Do đó ta có quy luật:
Số hạng cuối cùng của tập Sn bằng tổng các số tự nhiên liên tiếp từ 1 đến(n+1)- 1
Suy ra số hạng cuối cùng...
Thấy Sn có (n+1) số hạng trong tổng; VD: s100 có 101 số hạng
* Xét dãy: 2, 3, 4,..., 101
2+3+4+..+101 = (2+101).100/2 = 5150 là tổng các số hạng của S1, S2, .., S100
* Dãy 1, 2, 3,.., 5150 rõ ràng có số hạng thứ 5150 là 5150
nên ta có số hạng cuối cùng trong S100 là 5150
=> S100 = 5050 + 5051 + 5052 + .. + 5150 (có 101 số hạng)
S100 = (5050+5150).101/2 = 515100
~~~~~~~~
giải thích cho lớp 5 dễ hiểu!!!!!
* tính tổng: A = 2+3+4+..+101
=> A = 101 + 100 + .. + 3+2
=> 2A = (2+101) + (3+100) + (4+99) +..+(101+2)
2A = 103 + 103 +..+103 = 103x100
=> A = 103x100 : 2 = 5150
* tổng S100 tính tương tự, chú ý là số hạng sau cùng là 5150 thì trước nó 101 số hạng là số 5150 - 100 = 5050