CMR : \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Với \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}+\dfrac{1}{9^2}\)
Bài 1: tính
Cho A= \(\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+........+\dfrac{1}{60}>\dfrac{7}{12}\)
B=\(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}+.....+\dfrac{1}{50^2}\)
CMR B > \(\dfrac{1}{4}\); B < \(\dfrac{4}{9}\)
C = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...........\dfrac{79}{80}\)<\(\dfrac{1}{9}\)
Tính nhanh :
\(C=\dfrac{1}{3}+\dfrac{-3}{4}+\dfrac{3}{5}+\dfrac{1}{57}+\dfrac{-1}{36}+\dfrac{1}{15}+\dfrac{-2}{9}\)
\(D=\dfrac{1}{2}+\dfrac{-1}{5}+\dfrac{-5}{7}+\dfrac{1}{6}+\dfrac{-3}{35}+\dfrac{1}{3}+\dfrac{1}{41}\)
\(E=\dfrac{-1}{2}+\dfrac{3}{5}+\dfrac{-1}{9}+\dfrac{1}{127}+\dfrac{-7}{18}+\dfrac{4}{35}+\dfrac{2}{7}\)
Các bạn giúp với :<
Bài 1:
a, CMR: A = \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{21}{10^2.11^2}< 1\)
b, Cho B = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}.\) CMR: B không phải là số nguyên.
c, So sánh: C = \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2021}{2^{2020}}\) với 3.
1,
a,tính:\(\dfrac{\dfrac{7}{2012}+\dfrac{7}{9}-\dfrac{1}{4}}{\dfrac{5}{9}-\dfrac{1}{2012}-\dfrac{1}{2}}\)
b,so sánh:A=\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2010};B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{17}\)
a) \(\dfrac{\left(3+\dfrac{1}{6}\right)-\dfrac{2}{5}}{\left(5-\dfrac{1}{6}\right)+\dfrac{7}{10}}\)
b) \(\dfrac{\left(4,08-\dfrac{2}{25}\right):\dfrac{4}{17}}{\left(6\dfrac{5}{9}-3\dfrac{1}{4}\right).2\dfrac{2}{7}}\)
c) \(\dfrac{2-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{3}{5}}{3-\dfrac{1}{5}-\dfrac{5}{3}}\)
1/Tính:
a. S=\(\dfrac{5^2}{1.6}\) + \(\dfrac{5^2}{6.11}\)+ \(\dfrac{5^2}{11.16}\) + \(\dfrac{5^2}{16.21}\) + \(\dfrac{5^2}{21.26}\)
b. (1 - \(\dfrac{1}{2}\)) . (1 - \(\dfrac{1}{3}\) ) . (1- \(\dfrac{1}{4}\) ) . ( 1 - \(\dfrac{1}{5}\) ) .... ( 1 - \(\dfrac{1}{19}\) ) . ( 1 - \(\dfrac{1}{20}\))
Mk cần gấp lắm ~help me please~
Giúp mk với
Câu 1:
Cho A = \(\dfrac{1}{\dfrac{99}{\dfrac{1}{2}+}}+\dfrac{2}{\dfrac{98}{\dfrac{1}{3}+}}+\dfrac{3}{\dfrac{97}{\dfrac{1}{4}+....}}+...+\dfrac{99}{\dfrac{1}{\dfrac{1}{100}}}\).
B =\(\dfrac{92}{\dfrac{1}{45}+}-\dfrac{1}{\dfrac{9}{\dfrac{1}{50}+}}-\dfrac{2}{\dfrac{10}{\dfrac{1}{55}+}}-\dfrac{3}{\dfrac{11}{\dfrac{1}{60}+....}}-...\dfrac{92}{\dfrac{100}{\dfrac{1}{500}}}\). Tính \(\dfrac{A}{B}\)
1.8,cho A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\).CMR:\(\dfrac{2}{5}< A< \dfrac{8}{9}\)
1.9,cho A=\(\dfrac{2}{3}+\dfrac{2}{5^2}+\dfrac{2}{7^2}+...+\dfrac{2}{2007^2}.CMR:A< \dfrac{1007}{2008}\)