Rút gọn phân thức:
a, \(\frac{x^2-5}{x+\sqrt{5}}\) ( x ≠ - \(\sqrt{5}\) )
b, \(\frac{x^2+2\sqrt{2x}+2}{x^2-2}\)
c, \(\frac{a\sqrt{a}-1}{\sqrt{a}-1}+\frac{a^2-1}{\sqrt{a}+1}-a\sqrt{a}\)
Rút gọn phân thức
a, \(\frac{x^2-5}{x+\sqrt{5}}\) (x ≠ - \(\sqrt{5}\))
b, \(\frac{a\sqrt{a}-1}{\sqrt{a}-1}+\frac{a^2-1}{\sqrt{a}+1}-a\sqrt{a}\)
c, \(\frac{x^2+2\sqrt{2x}+2}{x^2-2}\)
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
1.So sánh
a) \(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
b)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) và \(\sqrt{2}\)
2. Rút gọn
a) \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\) với 0 ≤ a ≥ 1
b) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
d) \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)
e)\(\frac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\frac{1}{a^2+\sqrt{a}}\)
3. Giải phương trình
a)\(\frac{\sqrt{27x}}{\sqrt{3}}=6\)
b)\(\sqrt{x+1}=3-\sqrt{x}\)
c) \(\sqrt{2x+1}=2+\sqrt{x-3}\)
d) \(\sqrt{x-5}-\frac{x-14}{3+\sqrt{x-5}}=3\)
Cho A= (\(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)) : (\(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\))
a. Rút gọn A b. Tìm x để A < \(-\frac{1}{2}\) c. Tìm x để A đạt GTNN
Cho B= (\(\frac{\sqrt{x+1}}{\sqrt{x-1}}-\frac{\sqrt{x-1}}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\)) : (\(\frac{\sqrt{x-x-3}}{x-1}-\frac{1}{\sqrt{x-1}}\))
a. Rút gọn B b. Tính A với x=6-2\(\sqrt{5}\) c. CMR: A <_1
Cho P= \(\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x-1}}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a. Rút gọn P b. Tính giá trị của P khi x= 7-4\(\sqrt{3}\) c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Bài 1: Cho biểu thức: M = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x+3}}{2-\sqrt{x}}\)
Tìm điều kiện để M có nghĩa, rút gọn M
Bài 2: Cho biểu thức: A= [(\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\)).\(\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\)] : \(\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a, Rút gọn A
b, Biết xy = 16. Tìm các giá trị của x,y để A ccos giá trị nhỏ nhất. Tìm giá trị đó
Giúp em với ạ!
Cho biểu thức: P= (\(\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\)) : (\(2-\frac{\sqrt{x}}{\sqrt{x}+1}\))
a, Rút gọn biểu thức P
b, Tìm x để \(\frac{1}{P}\)≤ \(-\frac{5}{2}\)