Đặt \(A=\sqrt{7-\sqrt{3}}+\sqrt{7+\sqrt{3}}\)
\(\Leftrightarrow A^2=\left(\sqrt{7-\sqrt{3}}+\sqrt{7+\sqrt{3}}\right)^2\)
\(\Leftrightarrow A^2=7-\sqrt{3}+7+\sqrt{3}+2\sqrt{\left(7-\sqrt{3}\right)\left(7+\sqrt{3}\right)}\)
\(\Leftrightarrow A^2=14+2\sqrt{49-3}\)
\(\Leftrightarrow A^2=14+2\sqrt{46}\)
\(\Leftrightarrow A=\sqrt{14+2\sqrt{46}}\)( vì \(A>0\))
Vậy....