Mẫu thức chung là (√x+1)(√x−4)
Bạn quy đồng lên rồi tính là ra
P/s: mình hơi lười. Bạn thông cảm nhé
Mẫu thức chung là (√x+1)(√x−4)
Bạn quy đồng lên rồi tính là ra
P/s: mình hơi lười. Bạn thông cảm nhé
Cho BT: P = \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)×\dfrac{x-4}{\sqrt{4-x}}\) với x > 0, x ≠ 4 a) Rút gọn P b) Tìm x để P > 3
rút gọn:
A=\(x-4-\sqrt{16-8x^2+x^4}\left(x>4\right)\)
B=\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\left(a,b>0,a\ne b\right)\)
Rút gọn : a) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
b)\(\dfrac{x+4y-4\sqrt{xy}}{\sqrt{x}-2\sqrt{y}}+\dfrac{y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x\ge0;y\ge0;x\ne4y\right)\)
c)\(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\)
d)\(\dfrac{9-x}{\sqrt{3x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}\)
e)\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
g)\(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)với\) a, b \(\ge\)0 , a \(\ne\)9; b\(\ne\)25
Mọi người giúp tớ với , cảm ơn nhiều nhiều ạ !!
Cho P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x+2}}+\dfrac{6\sqrt{x+4}}{x-4}\right)\): \(\left(2-\dfrac{\sqrt{x-7}}{\sqrt{x-2}}\right)\)
a)Rút gọn P (x≥0; x≠4)
b)Tính giá trị của P tại x=16
c)So sánh P với 1
-GIÚP MÌNH VỚI Ạ-
\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
Cho M=\(\left(\dfrac{x+2\sqrt{x-7}}{x-9}+\dfrac{\sqrt{x-1}}{3-\sqrt{x}}\right)\):\(\left(\dfrac{1}{\sqrt{x+3}}-\dfrac{1}{\sqrt{x-1}}\right)\)
a)Rút gọn M (x ≥0 ; x≠9; x≠1)
b)Tìm x để M=2
c)Tìm x ∈ Z để M ∈ Z
-GIÚP MÌNH VỚI Ạ-
Tính giá trị của P = \(\left(\dfrac{\sqrt{x-1}}{3+\sqrt{x-1}}+\dfrac{x+8}{10-x}\right):\left(\dfrac{3\sqrt{x-1}+1}{x-3\sqrt{x-1}-1}-\dfrac{1}{\sqrt{x-1}}\right)\)khi x=\(\sqrt[4]{\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}}-\sqrt[4]{\dfrac{3-2\sqrt{2}}{3+2\sqrt{2}}}\)
rút gọn
P = \(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}}{x-4}\) với x > 0, x \(\ne\) 4
cho P = \(\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+1\right)^2+3}-\dfrac{4}{2-\sqrt{x}}+\dfrac{8\sqrt{x}+32}{8-x\sqrt{x}}\right]:\left(1-\dfrac{2}{2+\sqrt{x}}\right)\)
a, rút gọn
b, tính P tại x = \(9-4\sqrt{5}\)
c, tìm giá trị chính phương của x để P nguyên