a, \(A=\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(\dfrac{A}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(\dfrac{A}{\sqrt{2}}=\dfrac{2+\sqrt{3}}{3+\sqrt{3}}+\dfrac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(\dfrac{A}{\sqrt{2}}=\dfrac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}=1\)
\(\Rightarrow A=\sqrt{2}\)
\(B=\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{23-4\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{23-4\sqrt{5}}\)