a. \(\sqrt{49-20\sqrt{6}}-\sqrt{106+20\sqrt{6}}=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(10+\sqrt{6}\right)^2}=5-2\sqrt{6}-10-\sqrt{6}=-5-3\sqrt{6}\)
b. \(\sqrt{83-20\sqrt{6}}+\sqrt{62-20\sqrt{6}}=\sqrt{\left(5\sqrt{3}-2\sqrt{2}\right)^2}+\sqrt{\left(5\sqrt{2}-2\sqrt{3}\right)^2}=5\sqrt{3}-2\sqrt{2}+5\sqrt{2}-2\sqrt{3}=3\sqrt{3}+3\sqrt{2}\)
c. \(\sqrt{302-20\sqrt{6}}+\sqrt{203-20\sqrt{6}}=\sqrt{\left(10\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(10\sqrt{2}-\sqrt{3}\right)^2}=10\sqrt{3}-\sqrt{2}+10\sqrt{2}-\sqrt{3}=9\sqrt{3}+9\sqrt{2}\)
d. \(\sqrt{601-20\sqrt{6}}-\sqrt{154-20\sqrt{6}}=\sqrt{\left(10\sqrt{6}-1\right)^2}-\sqrt{\left(5\sqrt{6}-2\right)^2}=10\sqrt{6}-1-5\sqrt{6}+2=1+5\sqrt{6}\)