\(\frac{2}{5}\sqrt{50x}-\frac{3}{4}\sqrt{8x}=\frac{2}{5}.5\sqrt{2x}-\frac{3}{4}.2\sqrt{2x}=2\sqrt{2x}-\frac{3}{2}\sqrt{2x}=\left(2-\frac{3}{2}\right)\sqrt{2x}=\frac{1}{2}\sqrt{2x}\)
\(\frac{2}{5}\sqrt{50x}-\frac{3}{4}\sqrt{8x}=\frac{2}{5}.5\sqrt{2x}-\frac{3}{4}.2\sqrt{2x}=2\sqrt{2x}-\frac{3}{2}\sqrt{2x}=\left(2-\frac{3}{2}\right)\sqrt{2x}=\frac{1}{2}\sqrt{2x}\)
Giải phương trình
a \(\sqrt{x^2-4}-3\sqrt{x-2}=0\)
b \(x-6\sqrt{x}+9=0\)
c \(\sqrt{9x-27}+\sqrt{x-3}-\frac{1}{2}\sqrt{4x-12}=7\)
d \(3\sqrt{8x+4}-\frac{1}{3}\sqrt{18x+9}-\frac{1}{2}\sqrt{50x+25}+\sqrt[]{\frac{2x+1}{4}}=6\)
Giải các phương trình sau:
a.\(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
b.\(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
c.\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Rút gọn các biểu thức sau:
\(D=\left(\frac{5\sqrt{x-6}}{x-9}-\frac{2}{\sqrt{x}+3}\right):\left(1+\frac{6}{x-9}\right)\)
\(E=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{9+x}{9-x}\right).\left(3\sqrt{x}-x\right)\)
Rút gọn các biểu thức sau:
a) \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\), \(x\ge0\)
b) \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\sqrt{\dfrac{9x^3}{64}}\), \(x>0\)
c) \(C=\dfrac{y}{2}+\dfrac{3}{4}\sqrt{1+9y^2-6y}-\dfrac{3}{2}\), \(y\le\dfrac{1}{3}\)
1) Rút gọn:
a) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
b) \(\frac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}-\frac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)
2) Tính A:
A = \(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{99}-\sqrt{100}}-\frac{1}{\sqrt{100}-\sqrt{101}}\)
Rút gọn
\(\left(\frac{2}{\sqrt{5}-\sqrt{3}}-\frac{2}{\sqrt{5}+\sqrt{3}}-4\right):\frac{2+\sqrt{3}}{\sqrt{3}-2}\)
Rút gọn biểu thức: A=\(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}\)+\(\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
Rút gọn:
\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\frac{5}{\sqrt{3}-2\sqrt{2}}-\frac{5}{\sqrt{3}+\sqrt{8}}\)
Rút gọn:
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)