Chẳng hạn, An nói “Đây không phải là biển báo đường dành cho người đi bộ”.
Chẳng hạn, An nói “Đây không phải là biển báo đường dành cho người đi bộ”.
Cho các mệnh đề
P: “a và b chia hết cho c”;
Q: “a + b chia hết cho c”.
a) Hãy phát biểu định lí \(P \Rightarrow Q\). Nêu giả thiết, kết luận của định lí và phát biểu định lí này dưới dạng điều kiện cần, điều kiện đủ.
b) Hãy phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) rồi xác định tính đúng sai của mệnh đề đảo này.
Phát biểu mệnh đề đảo của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề này.
P: “Nếu số tự nhiên n có chữ số tận cùng là 5 thì n chia hết cho 5”;
Q: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”
Với hai số thực a và b, xét mệnh đề P: “\({a^2} < {b^2}\)” và Q: “\(0 < a < b\)”
a) Hãy phát biểu mệnh đề \(P \Rightarrow Q\);
b) Hãy phát biểu mệnh đề đảo của mệnh đề ở câu a.
c) Xác định tính đúng sai của mỗi mệnh đề ở câu a và câu b.
Cho hai câu sau:
P: “Tam giác ABC là tam giác vuông”;
Q: “Tam giác ABC có một góc bằng tổng hai góc còn lại”
Hãy phát biểu mệnh đề tương đương \(P \Leftrightarrow Q\) và xét tính đúng sai của mệnh đề này.
Cho mệnh đề Q: “Châu Á là châu lục có diện tích lớn nhất trên thế giới”. Phát biểu mệnh đề phủ định \(\overline Q \) và xác định tính đúng sai của hai mệnh đề Q và \(\overline Q \).
Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề phủ định đó.
P: “2 022 chia hết cho 5”
Q: “Bất phương trình 2x + 1 > 0 có nghiệm”.
Câu “Mọi số thực đều có bình phương không âm” là một mệnh đề. Có thể viết mệnh đề này như sau:
\(P: "\forall x \in \mathbb R,\;{x^2} \ge 0"\)
Câu “Có một số hữu tỉ mà bình phương của nó bằng 2” là một mệnh đề. Có thể viết mệnh đề này như sau: \(Q: "\exists \;x \in \mathbb Q,{x^2} = 2"\)
Em hãy xác định tính đúng sai của hai mệnh đề trên.
Phát biểu bằng lời mệnh đề sau và cho biết mệnh đề đó đúng hay sai.
"\(\forall x \in \mathbb R,\;{x^2} + 1 \le 0.\)"
Xét câu "x > 5". Hãy tìm hai giá trị thực của x để từ câu đã cho, ta nhận được một mệnh đề đúng và một mệnh đề sai.