Bài 12. Chuyển động ném

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Người ta bắn một viên bi với vận tốc ban đầu 4 m/s theo phương xiên 450 so với phương nằm ngang. Coi sức cản của không khí là không đáng kể.

1. Tính vận tốc của viên bi theo phương nằm ngang và phương thẳng đứng tại các thời điểm: bắt đầu bắn, sau 0,1 s và sau 0,2 s.

2.

a) Viên bi đạt tầm cao H vào lúc nào?

b) Tính tầm cao H.

c) Gia tốc của viên bi ở tầm cao H có giá trị bằng bao nhiêu?

3.

a) Vận tốc của viên bi có độ lớn cực tiểu ở vị trí nào?

b) Viên bi có vận tốc cực tiểu vào thời điểm nào?

4.

a) Khi nào thì viên bi chạm sàn?

b) Xác định vận tốc của viên bi khi chạm sàn.

c) Xác định tầm xa L của viên bi.

Kiều Sơn Tùng
15 tháng 11 2023 lúc 1:37

 

1.

+ Vận tốc ban đầu của viên bi theo phương ngang: \({v_{0x}} = {v_0}.\cos \alpha  = 4.\cos {45^0} = 2\sqrt 2 (m/s)\)

+ Vận tốc ban đầu của viên bi theo phương thẳng đứng: \({v_{0y}} = {v_0}.\sin \alpha  = 4.\sin {45^0} = 2\sqrt 2 (m/s)\)

+ Vận tốc của viên bi theo phương ngang sau 0,1 s và sau 0, 2 s là \({v_{0x}} = 2\sqrt 2 m/s\)

+ Vận tốc của viên bi theo phương thẳng đứng sau 0,1 s là: \({v_y} = {v_{0y}} - gt = 2\sqrt 2  - 9,8.0,1 \approx 1,85(m/s)\)

+ Vận tốc của viên bi theo phương thẳng đứng sau 0,2 s là:

\({v_y} = {v_{0y}} - gt = 2\sqrt 2  - 9,8.0,2 \approx 0,87(m/s)\)

Quoc Tran Anh Le
15 tháng 11 2023 lúc 1:37

2.

a) Thời gian viên bi đạt tầm cao H: \(t = \frac{{{v_{0y}}}}{g} = \frac{{2\sqrt 2 }}{{9,8}} \approx 0,29(s)\)

b) Tầm cao H là: \(H = \frac{{v_{0y}^2}}{{2.g}} = \frac{{{{(2\sqrt 2 )}^2}}}{{2.9,8}} \approx 0,4(m)\)

c) Gia tốc của viên bi ở tầm cao H là: a = g = 9,8 (m/s)

Quoc Tran Anh Le
15 tháng 11 2023 lúc 1:37

3.

a) Vận tốc của viên bi có độ lớn cực tiểu ở vị trí tầm cao H = 0,4 m

b) Viên vi có vận tốc cực tiểu vào thời gian: t = 0,29 s

Quoc Tran Anh Le
15 tháng 11 2023 lúc 1:37

4.

a) Thời gian viên bi chạm mặt sàn là: \(t = \frac{{2.{v_{0y}}}}{g} = \frac{{2.2\sqrt 2 }}{{9,8}} \approx 0,58(s)\)

b) Vận tốc của viên bi khi chạm đất là:

\(\begin{array}{l}v_y^2 = v_{0y}^2 + 2gh\\ \Rightarrow {v_y} = \sqrt {v_{0y}^2 + 2gh}  = \sqrt {{{(2\sqrt 2 )}^2} + 2.9,8.0,4}  \approx 4(m/s)\end{array}\)

c) Tầm xa của viên bi là:

\(L = \frac{{v_0^2.{{\sin }^2}2\alpha }}{g} = \frac{{{{(2\sqrt 2 )}^2}.{{\sin }^2}{{90}^0}}}{{9,8}} \approx 0,82(m)\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết