\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2.12}=\dfrac{S}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}\left(h\right)\end{matrix}\right.\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{2v_2}}=\dfrac{S}{S\left(\dfrac{1}{24}+\dfrac{1}{2v_2}\right)}\)
\(\Rightarrow\dfrac{1}{\dfrac{1}{24}+\dfrac{1}{2v_2}}=8\Rightarrow\dfrac{1}{2v_2}=\dfrac{1}{12}\Rightarrow v_2=6\left(\dfrac{km}{h}\right)\)