a) Công thức tính dân số của tỉnh đó: \({S_n} = {u_1}{.1,01^n}\)
b) Dân số của tính đó sau 10 năm:
\({S_{10}} = {2.1,01^{10}} \approx 2,21\) (triệu dân)
a) Công thức tính dân số của tỉnh đó: \({S_n} = {u_1}{.1,01^n}\)
b) Dân số của tính đó sau 10 năm:
\({S_{10}} = {2.1,01^{10}} \approx 2,21\) (triệu dân)
Một gia đình mua một chiếc ô tô giá 800 triệu đồng. Trung bình sau mỗi năm sử dụng, giá trị của ô tô giảm đi 4% (so với năm trước đó).
a) Viết công thức tính giá trị của ô tô sau 1 năm, 2 năm sử dụng
b) Viết công thức tính giá trị của ô tô sau n năm sử dụng
c) Sau 10 năm, giá trị của ô tô ước tính còn bao nhiêu triệu đồng?
Bác Linh gửi vào ngân hàng 100 triệu đồng tiền tiết kiệm với hình thức lãi kép, kì hạn 1 năm với lãi suất 6%/năm. Viết công thức tính số tiền (cả gốc lẫn lãi) mà bác Linh có được sau n năm (giả sử lãi suất không thay đổi qua các năm).
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công bội q
a) Viết năm số hạng đầu của cấp số nhân theo \({u_1}\) và q
b) Dự đoán công thức tính \({u_n}\) theo \({u_1}\) và q
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3;{u_3} = \frac{{27}}{4}\)
a) Tìm công bội q và viết năm số hạng đầu của cấp số nhân trên
b) Tính tổng 10 số hạng đầu của cấp số nhân trên
Cho cấp số nhân (un) với u1 = – 6, u2 = – 2.
a) Tìm công bội q.
b) Viết năm số hạng đầu của cấp số nhân đó.
Chứng minh mỗi dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát như sau là cấp số nhân:
a) \({u_n} = - \frac{3}{4}{.2^n}\)
b) \({u_n} = \frac{5}{{{3^n}}}\)
c) \({u_n} = {\left( { - 0,75} \right)^n}\)
Cho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = - 5\), công bội q = 2
a) Tìm \({u_9}\)
b) Số \( - 320\) là số hạng thứ bao nhiêu của cấp số nhân?
c) Số 160 có phải là một số hạng của cấp số nhân trên không?
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\), công bội \(q \ne 1\)
Đặt \({S_n} = {u_1} + {u_2} + {u_3} + ... + {u_n} = {u_1} + {u_1}q + {u_1}{q^2} + ... + {u_1}{q^{n - 1}}\)
a) Tính \({S_n}.q\) và \({S_n} - {S_n}.q\)
b) Từ đó, hãy tìm công thức tính \({S_n}\) theo \({u_1}\) và q.
Cho dãy số \(\frac{1}{3};\,\,1;\,\,3;\,\,9;\,\,27;\,\,81;\,\,243\)
Kể từ số hạng thứ hai, nêu mối liên hệ của mỗi số hạng với số hạng đứng ngay trước nó.