Bài 1. Phương trình quy về phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Quang Minh

Một người đi xe đạp từ A đến B cách nhau 60km. Sau 1 giờ 40 phút, trên cùng quãng đường đó, một xe máy cũng đi từ A đến B và đến B sớm hơn xe đạp 1 giờ. Tính tốc độ của mỗi xe, biết rằng tốc độ của xe máy gấp 3 lần tốc độ của xe đạp.

Hà Quang Minh
29 tháng 3 2024 lúc 14:36

Gọi tốc độ của xe đạp là \(x\) (km/h), \(x > 0\).

Thời gian xe đạp đi quãng đường từ A đến B là \(\frac{{60}}{x}\) (giờ).

Tốc độ của xe máy là \(3x\) (km/h).

Thời gian xe máy đi quãng đường từ A đến B là \(\frac{{60}}{{3x}} = \frac{{20}}{x}\) (giờ).

Đổi 1 giờ 40 phút = \(\frac{5}{3}\) giờ.

Vì xe máy xuất phát sau xe đáp 1 giờ 40 phút và đến sớm hơn xe đạp 1 giờ nên ta có phương trình:

\(\begin{array}{l}\frac{{60}}{x} - \frac{{20}}{x} = \frac{5}{3} + 1\\\frac{{40}}{x} = \frac{8}{3}\\\frac{{40.3}}{{3x}} = \frac{{8x}}{{3x}}\\120 = 8x\\x = 15\end{array}\)

Ta thấy \(x = 15\) thỏa mãn điều kiện \(x > 0\).

Vậy tốc độ của xe đạp là 15km/h; tốc độ của xe máy là 45km/h.