Bài 3. Giải hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Quang Minh

Một mảnh vườn hình chữ nhật có chu vi là 64 m. Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 3 m thì diện tích tăng thêm 88 m2 . Tính chiều dài, chiều rộng của mảnh vườn đó.

Gọi x, y lần lượt là chiều dài và chiều rộng của mảnh vườn hình chữ nhật (\(x \in \mathbb{N}*;y \in \mathbb{N}*\)).

Chu vi hình chữ nhật là 64m, nên ta có phương trình 2(x + y) = 64 suy ra x + y = 32 (1)

Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 3 m thì diện tích tăng thêm 88 m2 , nên ta có phương trình (x + 2)(y + 3) = xy + 88 suy ra 3x + 2y = 82 (2)

Từ (1) và (2) ta có hệ phương trình

\(\left\{ {\begin{array}{*{20}{c}}{x + y = 32}\\{3x + 2y = 82}\end{array}} \right.\)

Giải hệ phương trình ta được \(\left\{ {\begin{array}{*{20}{c}}{x = 18}\\{y = 14}\end{array}} \right.\) (Thoả mãn).

Vậy chiều dài là 18 m và chiều rộng là 14 m.