Gọi a(bạn) và b(bạn) lần lượt là số học sinh giỏi và số học sinh khá của lớp(Điều kiện: a∈N*; b∈N*)
Vì lớp học chỉ có các bạn học sinh xếp loại học lực giỏi và khá nên số học sinh của lớp là: a+b(bạn)
Vì khi một bạn học sinh giỏi chuyển đi thì 1/6 số học sinh còn lại của lớp là học sinh giỏi nên ta có phương trình:
\(a-1=\dfrac{1}{6}\cdot\left(a+b-1\right)\)
\(\Leftrightarrow a-1=\dfrac{1}{6}a+\dfrac{1}{6}b-\dfrac{1}{6}\)
\(\Leftrightarrow a-1-\dfrac{1}{6}a-\dfrac{1}{6}b+\dfrac{1}{6}=0\)
\(\Leftrightarrow\dfrac{5}{6}a-\dfrac{1}{6}b=\dfrac{5}{6}\)
\(\Leftrightarrow6\left(\dfrac{5}{6}a-\dfrac{1}{6}b\right)=6\cdot\dfrac{5}{6}\)
\(\Leftrightarrow5a-b=5\)(1)
Vì khi chuyển 1 bạn học sinh khá đi thì 4/5 số học sinh còn lại của lớp là học sinh khá nên ta có phương trình:
\(\left(b-1\right)=\dfrac{4}{5}\cdot\left(a+b-1\right)\)
\(\Leftrightarrow b-1=\dfrac{4}{5}a+\dfrac{4}{5}b-\dfrac{4}{5}\)
\(\Leftrightarrow b-1-\dfrac{4}{5}a-\dfrac{4}{5}b+\dfrac{4}{5}=0\)
\(\Leftrightarrow-\dfrac{4}{5}a+\dfrac{1}{5}b=\dfrac{1}{5}\)
\(\Leftrightarrow5\left(-\dfrac{4}{5}a+\dfrac{1}{5}b\right)=\dfrac{1}{5}\cdot5\)
\(\Leftrightarrow-4a+b=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}5a-b=5\\-4a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\5a=5+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b+5=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\left(nhận\right)\\b=25\left(nhận\right)\end{matrix}\right.\)
Vậy: Số học sinh của lớp là: 6+25=31(bạn)