Một hãng taxi đưa ra giá cước \(T\left( x \right)\) (đồng) khi đi quãng đường \(x\) (km) cho loại xe 4 chỗ như sau:
\(T\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{10000}&{khi\,\,0 < x \le 0,7}\\{ - 10000 + \left( {x - 0,7} \right).14000}&{khi{\rm{ }}0,7 < x \le 20}\\{280200 + \left( {x--20} \right).12000}&{khi{\rm{ }}x > 20}\end{array}} \right.\)
Xét tính liên tục của hàm số \(T\left( x \right)\).
Hàm số \(T\left( x \right)\) xác định trên khoảng \(\left( {0; + \infty } \right)\).
Hàm số \(T\left( x \right)\) xác định trên từng khoảng \(\left( {0;0,7} \right),\left( {0,7;20} \right)\) và \(\left( {20; + \infty } \right)\) nên hàm số liên tục trên các khoảng đó.
Ta có: \(T\left( {0,7} \right) = 10000\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0,{7^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ + }} \left( {10000 + \left( {x - 0,7} \right).14000} \right) = 10000 + \left( {0,7 - 0,7} \right).14000 = 10000\\\mathop {\lim }\limits_{x \to 0,{7^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ - }} 10000 = 10000\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to 0,{7^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to 0,{7^ - }} T\left( x \right) = 10000\) nên \(\mathop {\lim }\limits_{x \to 0,7} T\left( x \right) = 10000 = T\left( {0,7} \right)\).
Vậy hàm số \(T\left( x \right)\) liên tục tại điểm \({x_0} = 0,7\).
Ta có: \(T\left( {20} \right) = 10000 + \left( {20 - 0,7} \right).14000 = 280200\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ + }} \left( {280200 + \left( {x - 20} \right).12000} \right) = 280200 + \left( {20 - 20} \right).12000 = 280200\\\mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ - }} \left( {10000 + \left( {x - 0,7} \right).14000} \right) = 10000 + \left( {20 - 0,7} \right).14000 = 280200\end{array}\)
Vì \(\mathop {\lim }\limits_{x \to {{20}^ + }} T\left( x \right) = \mathop {\lim }\limits_{x \to {{20}^ - }} T\left( x \right) = 280200\) nên \(\mathop {\lim }\limits_{x \to 20} T\left( x \right) = 280200 = T\left( {20} \right)\).
Vậy hàm số \(T\left( x \right)\) liên tục tại điểm \({x_0} = 20\).
Vậy hàm số \(T\left( x \right)\) liên tục trên \(\left( {0; + \infty } \right)\).