Từ mỗi đỉnh của tam giác, ta kẻ được 1 đường phân giác của tam giác nên mỗi tam giác có 3 đường phân giác.
Từ mỗi đỉnh của tam giác, ta kẻ được 1 đường phân giác của tam giác nên mỗi tam giác có 3 đường phân giác.
Mỗi tam giác có mấy đường trung tuyến?
Cho tam giác ABC có hai đường phân giác AM, BN cắt nhau tại điểm I. Hỏi CI có là đường phân giác của góc C không?
Cắt một tam giác bằng giấy. Hãy gấp tam giác vừa cắt để được ba đường phân giác của nó. Mở tờ giấy ra, hãy quan sát và cho biết ba nếp gấp đó có cùng đi qua một điểm không (H.9.33)
Trên mảnh giấy kẻ ô vuông, mỗi chiều 10 ô, hãy đếm dòng, đánh dấu các đỉnh A,B,C rồi vẽ tam giác ABC. (H.9.29)
Vẽ hai đường trung tuyến BN, CP, chúng cát nhau tại G, tia AG cắt cạnh BC tại M.
- AM có phải là đường trung tuyến của tam giác ABC không?
- Hãy xác định các tỉ số \(\dfrac{{GA}}{{MA}};\dfrac{{GB}}{{NB}};\dfrac{{GC}}{{PC}}\)
Gọi BE và CF là hai đường phân giác của tam giác ABC cân tại A. Chứng minh BE = CF.
Chứng minh rằng:
a) Trong một tam giác cân, hai đường trung tuyến ứng với 2 cạnh bên là hai đoạn thẳng bằng nhau.
b) Ngược lại, nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Kí hiệu I là điểm đồng quy của ba đường phân giác trong tam giác ABC. Tính góc BIC khi biết góc BAC bằng 120\(^\circ \).
Trong tam giác ABC, hai đường phân giác của các góc B và C cắt nhau tại D. Kẻ DP vuông góc với BC, DQ vuông góc với CA, DR vuông góc với AB.
a) Hãy giải thích tại sao DP = DR.
b) Hãy giải thích tại sao DP = DQ.
c) Từ câu a và b suy ra DR = DQ. Tại sao D nằm trên tia phân giác của góc A? (Đây là một cách chứng minh định lí 2)
Trong tình huống mở đầu, người ta chứng minh được G chính là trọng tâm của tam giác ABC. Em hãy cắt một mảnh bìa hình tam giác. Xác định trọng tâm của tam giác và đặt mảnh bìa đó lên một giá nhọn tại trọng tâm vừa xác định. Quan sát xem mảnh bìa có thăng bằng không?