a)\(\sqrt{x^2+x-2}+\sqrt{x^2+2x-3}=\sqrt{x^2+4x-5}\left(1\right)\)
ĐK: \(\left[{}\begin{matrix}x\le-5\\x\ge1\end{matrix}\right.\left(a\right)}\)
Với x = 1 (1) đúng nên x = 1 là 1 nghiệm của (1)
Với \(x\ne1\) chia cả 2 vế của (1) cho \(\sqrt{x-1}\):
\(\left(1\right)\Leftrightarrow\sqrt{x+2}+\sqrt{x+3}=\sqrt{x+5}\left(2\right)\)
ĐK: \(x\ge-5\)
Kết hợp với ĐK(a) =>\(x\ge1\left(b\right)\)
\(\left(2\right)\Leftrightarrow x+2+x+3+2\sqrt{\left(x+2\right)\left(x+3\right)}=x+5\\ \Leftrightarrow x+2\sqrt{\left(x+2\right)\left(x+3\right)}=0\\ \Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}=-x\)
=>\(x\le0\)
Kết hợp với đk(b)=> không có \(x\ne1\) thỏa mãn pt(1)
Vậy phương trình có nghiệm duy nhất là x=1