ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có :
\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+2\right)\left(2-\frac{\sqrt{x}+x}{1+\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}+2\right)\left(2-\frac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\)
\(=\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\)
\(=4-x\)
Vậy...