Ta có: \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\dfrac{6}{7}\)
\(\Leftrightarrow5x=\dfrac{13}{7}\)
\(\Leftrightarrow x=\dfrac{13}{35}\)
Vậy \(x=\dfrac{13}{35}\)
(5x + 1)2 = \(\dfrac{36}{49}\)
<=> (5x + 1)2 = (\(\dfrac{6}{7}\))2
<=> 5x + 1 = \(\dfrac{6}{7}\)
<=> 5x = \(-\dfrac{1}{7}\)
<=> x = \(-\dfrac{1}{35}\)
@Võ Ngọc Tường Vy
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
=>\(\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2\)hoặc \(\left(5x+1\right)^2=\left(\dfrac{-6}{7}\right)^2\)
=>5x+1=\(\dfrac{6}{7}\)hoặc 5x+1=\(\dfrac{-6}{7}\)
=>5x=\(\dfrac{-1}{7}\)hoặc 5x=\(\dfrac{-13}{7}\)
=>x=\(\dfrac{-1}{35}\)hoặc x=\(\dfrac{-13}{35}\)
- Ta có: ( 5x + 1 ) 2 \(=\dfrac{36}{49}\)
=> \(\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\left(\dfrac{6}{7}\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}5x=-\left(\dfrac{1}{7}\right)\\5x=-\left(\dfrac{13}{7}\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-\left(\dfrac{1}{35}\right)\\x=-\left(\dfrac{13}{35}\right)\end{matrix}\right.\)
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\dfrac{6}{7}\)
\(\Leftrightarrow5x=\dfrac{6}{7}-1=\dfrac{-1}{7}\)
\(\Leftrightarrow x=\dfrac{-1}{35}\)
Ta có: \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\dfrac{6}{7}\)
\(\Leftrightarrow5x=\dfrac{13}{7}\)
\(\left[{}\begin{matrix}x=\dfrac{13}{35}\\x=\dfrac{1}{35}\\x=\dfrac{-13}{35}\\x=\dfrac{-1}{35}\end{matrix}\right.\)