Giải:
Có \(\left|2x-6\right|=x-7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=x-7\\2x-6=-\left(x-7\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-6=x-7\\2x-6=-x+7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7+6\\3x=7+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=13\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{13}{3}\end{matrix}\right.\)
Vậy \(x=-1\) hoặc \(x=\dfrac{13}{3}\).
Chúc bạn học tốt!
l2x-6l =x-7
đk: \(x-7\ge0\Rightarrow x\ge7\forall x\) ( * )
\(\left[{}\begin{matrix}2x-6=x-7\\2x-6=-x+7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=13\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{13}{3}\end{matrix}\right.\)( ko t/m đk *)
=> \(x\in\varnothing\)