Bài :cho tam giác ABC vuông tại A, đường cao AH
a) chứng minh tam giác ABC đồng dạng với tam giác HBA
b) chứng minh AH^2 = BH * CH
c) Gọi D và E là hình chiếu của H trên AB và AC. Cho bt BH = 4 cm, CH = 16 cm, hãy tính độ dài DE
d) kẻ trung tuyến AM của tam giác ABC. Tính tỉ số diện tích của tam giác AMH và tam giác ABC khi biết BH = 4cm, CH = 16 cm
Cho tam giác ABC có đường trung tuyến AM.Điểm D thuộc đoạn thẳng BM.Từ D kẻ tia song song với AM và cắt cạnh AB, và tia CA lần lượt tại E và F.Lấy điểm I trên đoạn thẳng FE sao cho AI / / BC, điểm G trên cạnh AC sao cho EG/ / BC.AM cắt EG tại K.Chứng minh: a)K là trung điểm của EG b)Alà trung điểm của FG và I là trung điểm của FE
Bài 1: Cho hình thang ABCD ( AB//CD) . O là giao của 2 đường chéo , qua O kể đường thẳng // với 2 đáy cắt AD tại M, cắt BC tại N. CMR : O là trung điểm của MN
Bài 2: Cho \(\bigtriangleup{ABC}\) có S=120 cm2 . Đường cao AH , trung tuyến AM , gọi G là trọng tâm của \(\bigtriangleup{ABC}\). Đường thẳng đi qua G//BC cắt AB, AH, AC lần lượt tại E, I, F
a) Tính \(\dfrac{EF}{BC}\)và \(\dfrac{AI}{AH}\)
b) SAEF=?
Bài 3: Cho \(\diamond{ABCD}\) , đường thẳng đi qua A// với BC cắt BD tại E ; đường thẳng đi qua B // với AD cắt AC tại G
a) CM: EG//CD
b) Giả sử AB//CD . CM: AB2=CD.EG
trên các cạnh của ab,ac của tam giác abc lần lượt lấy m và n sao cho am/mb=an/nc.gọi l là tđ của bc , k là giao điểm của al và mn . cm km=kn
Cho tam giác ABC, đường trung tuyến AM, tia phân giác của góc AMB cắt AB ở D, tia phân giác của góc AMC cắt AC ở E.
a, CMR: DE//DC.
b, Gọi G là giao điểm của AM và DE. CMR: G là trung điểm của DE. Tìm điều kiện của tam giác ABC để G là trung điểm của AM
d, Gọi AN là p/g của góc BAC(N ∈BC). Bt AB=12, AC=16,BC=20. Tính diện tích ΔAMN
Cho tam giác ABC, D thuộc AB, E thuộc AC sao cho AD/AB=CE/CA. M là trung điểm DE. CMR M nằm trên đường trung bình của tam giác ABC
BT1: Cho tam giác ABC, trung tuyến AM.Lấy điểm N trên cạnh AB, điểm Q trên cạnh AC sao cho NQ// BC. Gọi K là giao của AM và NQ. Cmr: NK=KQ.
BT2: Cho hình bình hành ABCD, trên tia đối của tia CB lấy điểm I, AI cắt BD,
DC lần lượt ở K,G. Chứng minh:
a, CI/IB=IG/AT
b, DG/DC=DK/KB
c, AK.BI = KI.AD
d, AK2= KG.KI