Bài 4. Biến đổi đơn giản biểu thức chứa căn thức bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Khử mẫu của các biểu thức lấy căn:

a) \(\sqrt {\frac{{11}}{6}} \)

b) \(a\sqrt {\frac{2}{{5a}}} \) với a > 0

c) \(4x\sqrt {\frac{3}{{4xy}}} \) với x > 0; y > 0

datcoder
25 tháng 10 lúc 10:50

a) \(\sqrt {\frac{{11}}{6}}  = \sqrt {\frac{{11.6}}{{6.6}}}  = \frac{{\sqrt {66} }}{{\sqrt {{6^2}} }} = \frac{{\sqrt {66} }}{6}\)

b) \(a\sqrt {\frac{2}{{5a}}}  = a.\sqrt {\frac{{2.5a}}{{5a.5a}}}  = a.\frac{{\sqrt {10a} }}{{\sqrt {{{(5a)}^2}} }} = a.\frac{{\sqrt {10a} }}{{5\left| a \right|}}\)

Vì a > 0 nên \(a.\sqrt {\frac{2}{{5a}}}  = a.\frac{{\sqrt {10a} }}{{5a}} = \frac{{\sqrt {10a} }}{{5}}\)

c) \(4x\sqrt {\frac{3}{{4xy}}}  = 4x\sqrt {\frac{{3.4xy}}{{4xy.4xy}}}  = 4x\frac{{\sqrt {12xy} }}{{\sqrt {{{\left( {4xy} \right)}^2}} }} = \frac{{8x\sqrt {3xy} }}{{\left| {4xy} \right|}}\)

Vì x > 0; y > 0 nên \(4x\sqrt {\frac{3}{{4xy}}} = \frac{{8x\sqrt {3xy} }}{4xy} = \frac{{2\sqrt {3xy} }}{y}\)